Research & Application
  1. C.A. Karavitis, C.G. Vasilakou, D.E. Tsesmelis, P.D. Oikonomou, N.A. Skondras, D. Stamatakos, V. Fassouli and S. Alexandris, 2015. Short-term drought forecasting combining stochastic and geo-statistical approaches.  Issue 49, European Water. Available
  2. Karavitis, C.A., Vasilakou, C.G., Tsesmelis, D.E., Alexandris, S., Fassouli, V., Stamatakos, D., Skondras, N., Gironas, J., Hunter, C., Porto, M., Dalcanale, F., Reyna, R., Labaque, M., Vanegas, M., Ramirez, E., 2014. Statistical Analysis and Development of Vulnerability Indicators – Internal Report. COROADO Project
  3. Karavitis, C.A., Vasilakou, C.G., Tsesmelis, D.E., Alexandris, S.G., Fassouli, V.P., Stamatakos, D.V. and Skondras, N.A., 2013. Drought Forecasting Using SPI & ARIMA Models. International Conference “Facets of Uncertainty – Statistical Hydrology 2013”. Kos Island Greece. 17 – 19/10/2013.
  4. Karavitis, C.A., Alexandris, S.G., Fassouli, V.P., Stamatakos, D.V., Vasilakou, C.G., Tsesmelis, D.E. and Skondras, N.A., 2013. Assessment of Meteorological Drought Statistics and Patterns in Central Greece. 13th International Conference on “Environmental Science and Technology – CEST-2013”. Athens, Greece. 05 – 07/09/2013 “available
  5. Karavitis, C., Skondras, N., Fassouli, V., Tsesmelis, D., Stamatakos, D., Alexandris, S., Salvador, R., Isidoro, D., Dechmi, F., Lecina, S., Aragues, R., Quilez, D., Zapata, N., Playan, E., Stolte, J., Eggen G., Oertlé, E., Gross, T., Wintgens, T., Verzandvoort, S., Heesmans, H., van den Elsen, E., 2012. Manual of Indicators: Data Request – Internal Report. COROADO Project

Related Publications

  1. Kohl, N., and Miikkulainen, R., 2009. Evolving Neural Networks for Strategic Decision Making Problems. In Neural Networks, 22(3): 326 – 337. doi:10.1016/j.neunet.2009.03.001
  2. Shlens, J., 2009. A Tutorial on Principal Component Analysis.
  3. Organization for Economic Co-operation and Development (OECD), 2008. Handbook on Constructing Composite Indicators: Methodology and User Guide. Available at: “available”
  4. Hyde, K.M., 2006. Uncertainty analysis methods for multi-criteria decision analysis. Ph.D. Dissertation. University of Adelaide, School of Civil and Environmental Engineering. “available”
  5. Cacuci, D.G., 2003. Sensitivity and Uncertainty Analysis: Theory. Volume 1. Chapman & Hall/CRC. “available”
  6. Chantala, K., Suchindran, C., 2003. Multiple Imputation for Missing Data. SAS OnlineDocTM: Version 8.
  7. Balmann, A., Happe, K., Kellermann, K., Kleingarn, A., 2002. Adjustment costs of agri-environment policy switchings: an agent-based analysis of the German region Hohenlohe. In: Janssen M (ed) Complexity and ecosystem management: the theory and practice of multi-agent systems. Edward Elgar, Cheltenham, UK, pp 127–157
  8. Frey, H., and Patil, S., 2002. Identification and review of sensitivity analysis methods. Risk Analysis, 22:553–78. DOI: 10.1111/0272-4332.00039
  9. Little, R.J.A., and Rubin, D.B., 2002. Statistical Analysis with Missing Data, Wiley Interscience, J. Wiley & Sons, Hoboken, New Jersey.
  10. Smith, L.I., 2002. A tutorial on Principal Components Analysis. “available”
  11. Breierova, L., and Choudhari, M., 2001. An Introduction to Sensitivity Analysis. Prepared for the MIT System Dynamics in Education Project. “available”
  12. Andersson, F.O., Aberg, M., and Jacobsson, S.P., 2000. Algorithmic Approaches for Studies of Variable Influence, Contribution and Selection in Neural Networks. Chemo-metrics and Intelligent Laboratory Systems, 51(1):61-72. doi:10.1016/S0169-7439(00)00057-5.
  13. Cullen, A.C., and Frey, H.C., 1999. Probabilistic Techniques in Exposure Assessment. Plenum Press: New York.
  14. Nyberg, J.B., 1998. Statistics and the practice of adaptive management. Pages 1-7 in Statistical Methods for Adaptive Management Studies, V. Sit and B. Taylor, (editors). Land Manage. Handbook 42, B.C. Ministry of Forests, Victoria, BC.
  15. Butler, J., Jia, J., Dyer, J., 1997. Simulation techniques for the sensitivity analysis of multi-criteria decision models. European Journal of Operational Research, 103 (3): 531-546. doi:10.1016/S0377-2217(96)00307-4.
  16. Devore, J.L., and R. Peck, R., 1996. Statistics: The Exploration and Analysis of Data. 3rd Edition. Brooks/Cole Publishing Company: London, England.
  17. Neter, J., Kutner, M.H., Nachtsheim, C.J., and Wasserman, W., 1996. Applied Linear Statistical Models. Fourth Edition. McGraw-Hill: Chicago, IL.
  18. Castrup, H., 1995. Uncertainty Analysis for Risk Management. Presented at the Measurement Science Conference, Anaheim, California, January 27, 1995.
  19. French, S., 1995. Uncertainty and imprecision: Modelling and analysis. The Journal of the Operational Research Society, 46 (1): 553 – 578.
  20. Cook, R.D., 1994. An Introduction to Regression Graphics. John Wiley and Sons: New York.
  21. Salas. J. 1993. Analysis and modeling of hydrologic time series. Handbook of hydrology. McGraw-Hill. New York. Vol. 19. pp. 1-72.
  22. Barron, H., and Schmidt, P., 1988. Sensitivity analysis of additive multiattribute value models. Operations Research, 36 (1): 122-127. “available”
  23. Critchfield, G.C., and Willard, K.E., 1986. Probabilistic Analysis of Decision Trees Using Mote Carlo Simulation. Medical Decision Making, 6(1):85-92. doi: 10.1177/0272989X8600600205
  24. Cukier, R.I., H.B. Levine, H.B., Shuler, K.E., 1978. Nonlinear Sensitivity Analysis of Multiparameter Model Systems. Journal of Computational Physical, 26(1):1-42. doi:10.1016/0021-9991(78)90097-9
  25. Anderberg, M.R., 1973. Cluster Analysis for Applications, New York: Academic Press, Inc.
  26. Bridgman, P.W., 1922. Dimensional Analysis. New Haven, CT, U.S.A.: Yale University Press.