Research & Application
  1. Alexandris S., Proutsos N., Karavitis Ch., Tsiros I. and Stamatakos D., 2013, Reasons for nonrational estimates of Reference Evapotranspiration in Greece, 8th National Conference of Agricultural Engineering, Volos Greece 25-26/09/2013 (In Greek)
  2. Alexandris S., Tsesmelis D., Skondras N., Stamatakos D., Vasilakou C., Gkotsis I., Fassouli V., Vitoratos E., Chatzithomas C., Proutsos N., Karavitis C. Comparative Analysis of Reference Evapotranspiration (ETo) Using Terrestrial and Satellite Data In Central Greece, 9th National Conference of Agricultural Engineering,  Thessalonike  8 & 9/10/2015 (file presentation)

Related Publications

  1. Ackerman S.A., K.I. Strabala, W.P. Menzel, R.A. Frey, C.C. Moeller, L.E. Gumley Discriminating clear sky from clouds with MODIS J. Geophys. Res., 103 (D24) (1998), pp. 32141–32157.
  2. Agam N., S.R. Evett, J.A. Tolk, W.P. Kustas, P.D. Colaizzi, J.G. Alfieri, L.G. McKee, K.S. Copeland, T.A. Howell, J.L. Chávez Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area Adv. Water Resour., 50 (2012), pp. 20–30.
  3. Alfieri J.G., W.P. Kustas, J.H. Prueger, L.E. Hipps, S.R. Evett, J.B. Basara, C.M.U. Neale, A.N. French, P. Colaizzi, N. Agam, M.H. Cosh, J.L. Chávez, T.A. Howell. On the discrepancy between eddy covariance and lysimetry-based surface flux measurements under strongly advective conditions Adv. Water Resour., 50 (2012), pp. 62–78.
  4. Alexandris S, Kerkides P.,(2003). New empirical formula for hourly estimations of reference evapotranspiration. Agricultural Water Management.Vol.60 (3):157-180.
  5. Alexandris S., P. Kerkides and A. Liakatas, (2006). Daily reference evapotranspiration estimates by the “Copais” approach. Agricultural Water Management, 2006, vol. 82, issue 3, pages 371-386.
  6. Alexandris S., R.Stricevic and S.Petkovic, (2008). Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman-Monteith formula. pp. 17 – 28.
  7. Allen R.G., L.S. Pereira, T.A. Howell, M.E. Jensen Evapotranspiration information reporting: I. factors governing measurement accuracy Agric. Water Manage., 98 (6) (2011), pp. 899–920.
  8. Anderson M.C., J.M. Norman, G.R. Diak, W.P. Kustas, J.R. Mecikalski. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing Remote Sens. Environ., 60 (1997), pp. 195–216.
  9. Anderson M.C., J.M. Norman, J.R. Mecikalski, J.A. Otkin, W.P. Kustas. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. model formulation J. Geophys. Res., 112 (2007), p. D10117.
  10. Anderson M.C., W.P. Kustas, J.G. Alfieri, C.R. Hain, J.H. Prueger, S.R. Evett, P.D. Colaizzi, T.A. Howell, J.L. Chávez. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX’08 field campaign Adv. Water Resour., 50 (2012), pp. 162–177.
  11. Bastiaanssen W.G.M., E.J.M. Noordman, H. Pelgrum, G. davids, B.P. Thoreson, R.G. Allen. SEBAL model with remotely sensed data to improve water resources management under field conditions J. Irrig. Drain. Eng., 131 (1) (2005), pp. 85–93.
  12. Berk, A. L.S. Bernstein, D.C. Robertson. MODTRAN: A Moderate Resolution Model for LOWTRAN 7. GL-TR-89-0122 Air Force Geophysics Lab, Bedford, MA (1989), p. 38.
  13. Brutsaert W., M. Sugita. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation J. Geophys. Res., 97 (D17) (1992), pp. 18377–18382
  14. Cammalleri C., M.C. Anderson, G. Ciraolo, G. D’Urso, W.P. Kustas, G. La Loggia, M. Minacapilli. Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in-situ air temperature observations. Remote Sens. Environ., 124 (2012), pp. 502–515.
  15. Campbell G.S., J.M. Norman. An Introduction to Environmental Biophysics Springer-Verlag (1998), p. 286.
  16. De Pauw, E., Gφbel, W., and Adam, H. (2000). Agrometeorological aspects of agriculture and forestry in the arid zones. Agricultural and Forest Meteorology 103: 43-58.
  17. Decker, W.L. (1994). Developments in agricultural meteorology as a guide to its potential for the twenty-first century. Agricultural and Forest Meteorology 69: 9-25.
  18. Dudhia J. A nonhydrostatic version of the Penn State/NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cloud front. Mon. Weather Rev., 121 (1993), pp. 1493–1513.
  19. Evett S.R., W.P. Kustas, P.H. Gowda, M.C. Anderson, J.H. Prueger. Overview of the Bushland Evapotranspiration and Agricultural Remote Sensing Experiment 2008 (BEAREX08): a field experiment evaluating methods for quantifying ET at multiple scales Adv. Water Resour., 50 (2012), pp. 4–19.
  20. Fleming, J. (Ed.) (1996). Historical Essays in Meteorology—1919-1995. Boston, MA: American Meteorological Society.
  21. Gao F., J. Masek, M. Schwaller, F. Hall. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance IEEE Trans. Geosci. Remote Sens., 44 (8) (2006), pp. 2207–2218.
  22. Gao F., M.C. Anderson, W.P. Kustas, Y. Wang. Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference J. Appl. Remote Sens., 6 (2012), p. 063554.
  23. Chatzithomas C.D.& Alexandris S.G., 2015. Solar radiation and relative humidity based, empirical method, to estimate hourly reference evapotranspiration doi:10.1016/j.agwat.2015.01.019
  24. Hatfield, J.L. (1994). Future needs in agricultural meteorology: Basic and applied research. Agricultural and Forest Meteorology 69: 39-45.
  25. Hilker, M.A. Wulder, N.C. Coops, N. Sritz, J.C. White, F. Gao, J.G. Masek, G. Stenhouse Generation of dense t T.ime series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model Remote Sens. Environ., 113 (2009), pp. 1988–1999.
  26. Hollinger, S.E. (1994). Future directions and needs in agricultural meteorology/climatology and modeling. Agricultural and Forest Meteorology 69: 1-7.
  27. Holmes T.R.H., W.T. Crow, C.R. Hain. Spatial patterns in timing of the diurnal temperature cycle. Hydrol. Earth Syst. Sci., 17 (2013), pp. 3695–3706.
  28. Homer C., J. Dewitz, J. Fry, M. Coan, N. Hossain, C. Larson, N. Herold, A. McKerrow, J.N. VanDriel, J. Wickham Completion of the 2001 National Land Cover Database for the Conterminous United States Photogramm. Eng. Remote Sens., 73 (4) (2007), pp. 337–341.
  29. Hoogenboom, G. (2000). Contribution of agrometeorology to the simulation of crop production and its applications. Agricultural and Forest Meteorology 103: 137-157.
  30. Hoppe, P. (2000). Challenges for biometeorology on the turn of the century. In de Dear, R., Oke, T., Kalma, J., and Auliciems, A. (Eds.), Biometeorology and Urban Climatology at the Turn of the Millennium (pp. 383-386). Geneva: World Meteorological Organization.
  31. Jacob F., F. Petitcolin, T.J. Schmugge, E. Vermote, K. Ogawa, A.N. French. Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors Remote Sens. Environ., 90 (2004), pp. 137–152.
  32. Jagtap, S.S. and Chan, A.K. (2000). Agrometeorological aspects of agriculture in the sub-humid and humid zones of Africa and Asia. Agricultural and Forest Meteorology 103: 59-72.
  33. Kalma J.D., T.R. McVicar, M.F. McCabe Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data Surv. Geophys., 29 (4–5) (2008), pp. 421–469.
  34. Kustas W.P., J.M. Norman, M.C. Anderson, A.N. French. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ., 85 (2003), pp. 429–440.
  35. Kustas W.P., J.M. Norman. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover Agric. For. Meteorol., 99 (1999), pp. 13–29.
  36. Li F., W.P. Kustas, J.H. Prueger, C.M.U. Neale, T.J. Jackson. Utility of remote sensing-based two-source energy balance model under low- and high-vegetation cover conditions J. Hydrometeorol., 6 (2005), pp. 878–891.
  37. Liang S., K. Wang, X. Zhang, M. Wild. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE J. Sel. Topics Appl. Earth Observ., 3 (3) (2010), pp. 225–240.
  38. Lomas, J., Milford, J.R., and Mukhala, E. (2000). Education and training in agricultural meteorology: Current status and future needs. Agricultural and Forest Meteorology 103: 197-208.
  39. Maracchi, G., Pιrarnaud, V., and Kleschenko, A.D. (2000). Applications of geographical information systems and remote sensing in agrometeorology. Agricultural and Forest Meteorology 103: 119-136.
  40. Mavi, H.S. (1994). Introduction to Agrometeorology. New Delhi: Oxford & IBH.
  41. Monteith, J.L. (2000). Agricultural meteorology: Evolution and application. Agricultural and Forest Meteorology 103: 5-9.
  42. Myneni R.B., S. Hoffman, Y. Knyazikhin, J.L. Privette, J. Glassy, Y. Tian, J. Wang, X. Song, Y. Zhang, G.R. Smith, A. Lotsch, M. Friedl, J.T. Morisette, P. Votava, R.R. Nemani, S.W. Running Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83 (1–2) (2002), pp. 214–231.
  43. Newman, J.E. (1974). Applying meteorology to agriculture. Agricultural Meteorology 13: 1-3.
    41. Norman J.M., M.C. Anderson, W.P. Kustas, A.N. French, J. Mecikalski, R. Torn, G.R. Diak, T.J. Schmugge, B.C.W. Tanner. Remote sensing of surface energy fluxes at 101-m pixel resolution. Water Resour. Res., 39 (2003), pp. 1221–1237.
  44. Norman J.M., W.P. Kustas, K.S. Humes Source approach for estimating soil and vegetation energy fluxes in observations directional radiometric surface temperature Agric. For. Meteorol., 77 (1995), pp. 263–293.
  45. Ogallo, L.A., Boulahya, M.S., and Keane, T. (2000). Applications of seasonal to interannual climate prediction in agricultural planning and operations. Agricultural and Forest Meteorology 103: 159-166.
  46. Olufayo, A.A., Stigter, C.J., and Baldy, C. (1998). On needs and deeds in agrometeorology in tropical Africa. Agricultural and Forest Meteorology 92: 227-240.
  47. Osteen C., J. Gottlieb, U. Vasavada (Eds.), Agricultural Resources and Environmental Indicators – 2012. EIB-98, US Department of Agriculture, Economic Research Service, Washington, DC, USA (2012), pp. 29–32.
  48. Otkin J.A., M.C. Anderson, J.R. Mecikalski, G.R. Diak. Validation of GOES-based insolation estimates using data from the United States Climate Reference Network J. Hydrometeorol., 6 (2005), pp. 460–475.
  49. Overdieck, D. (1997). Statement of the field editor for plants. International Journal of Biometeorology 40: 2.
  50. Ozdogan M., G. Gutman. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US Remote Sens. Environ., 112 (2008), pp. 3520–3537.
  51. Paw U, K.T. (2000). Recent advances in agricultural, forest and plant biometeorology. In de Dear, R., Oke, T., Kalma, J., and Auliciems, A. (Eds.), Biometeorology and Urban Climatology at the Turn of the Millennium (pp. 217-222). Geneva: World Meteorological Organization.
  52. Perry, K.B. (1994). Current and future agricultural meteorology and climatology education needs of the US Extension service. Agricultural and Forest Meteorology 69: 33-38.
  53. Plant, S. (2000). The relevance of seasonal climate forecasting to a rural producer. In Hammer, G.L., Nicholls, N., and Mitchell, C. (Eds.), Applications of Seasonal Climate Forecasting in Agricultural and Natural Ecosystems (pp. 23-28). London: Kluwer Academic Publishers.
  54. Rijks, D. and Baradas, M.W. (2000). The clients for agrometeorological information. Agricultural and Forest Meteorology 103: 27-42.
  55. Salinger, M.J., Stigter, C.J., and Das, H.P. (2000). Agrometeorological adaptation strategies to increasing climate variability and climate change. Agricultural and Forest Meteorology 103: 167-184.
  56. Santanello J.A Jr., M.A. Friedl. Diurnal covariation in soil heat flux and net radiation J. Appl. Meteorol., 42 (2003), pp. 851–862.
  57. Seeley, M.W. (1994). The future of serving agriculture with weather/climate information and forecasting: Some indication and observation. Agricultural and Forest Meteorology 69: 47-49.
  58. Seguin B., F. Becker, T. Phulpin, X.F. Gu, G. Guyot, Y. Kerr, C. King, J.P. Lagouarde, C. Ottlé, M.P. Stoll, A. Tabbagh, A. Vidal IRSUTE: a multisatellite project for LAND surface heat flux estimation from field to regional scale Remote Sens. Environ., 68 (1999), pp. 357–369.
  59. Serafin, R.J., Macdonald, A.E., and Gall, R.L. (2002). Transition of weather research to operations: Opportunities and challenges. Bulletin of the American Meteorological Society 83: 377-392.
  60. Sivakumar, M.V.K., Stigter, C.J., and Rijks, D. (2000). Foreword. Agricultural and Forest Meteorology 103: 1-2.
  61. Smith, L.P. (1970). Aims and extent of agricultural meteorology. Agricultural Meteorology 7: 193-196.
    61. Stigter, C.J., Sivakumar, M.V.K., and Rijks, D.A. (2000). Agrometeorology in the 21st century: Workshop summary and recommendations on needs and perspectives. Agricultural and Forest Meteorology 103: 209- 227.
  62. Strand, J.F. (2000). Some agrometeorological aspects of pest and disease management for the 21st century. Agricultural and Forest Meteorology 103: 73-82.
  63. Suyker and Verma, 1993. Eddy correlation measurements of CO2 flux using a closed-path sensor: theory and field tests against an open-path sensor. Boundary-Layer Meteorol., 64 (1993), pp. 391–407.
  64. Van Niel T.G., T.R. McVicar, M.L. Roderick, A.I.J.M. van Dijk, J. Beringer, L.B. Hutley, E. van Gorsel, 2012. Upscaling latent heat flux for thermal remote sensing studies: comparison of alternative approaches and correction of bias J. Hydrol., 468–469 (2012), pp. 35–46.
  65. Verma S.B., A. Dobermann, K.G. Cassman, D.T. Walters, J.M. Knops, T.J. Arkebauer, A.E. Suyker, G.G. Burba, B. Amos, H.S. Yang, D. Ginting, K.G. Hubbard, A.A. Gitelson, E.A. Walter-Shea. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems . Agric. For. Meteorol., 131 (1–2) (2005), pp. 77–96.
  66. Webb E.K., G.I. Pearman, R. Leuning. Correction of flux measurements for density effects due to heat and water vapour transfer Q. J. R. Meteorol. Soc., 106 (1980), pp. 85–100.
  67. Weiss, A., Van Crowder, L., and Bernardi, M. (2000). Communicating agrometeorological information to farming communities. Agricultural and Forest Meteorology 103: 185-196.
  68. Wilson K.B., D.D. Baldocchi Seasonal and interannual variability of energy fluxes over a broadleaved temperature deciduous forest in North America Agric. For. Meteorol., 100 (2000), pp. 1–18.